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Electromagnetism in non-inertial coordinates 
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Received 22 January 1990, in final form 6 June 1990 

Abstract. The electromagnetic equations are expressed in a form appropriate to an observer 
in arbitrary motion in flat spacetime. The field equations preserve their form, dependence 
on the motion being confined to the material constitutive relations which are assumed 
linear and non-dispersive. The 4-metric is uniquely defined by the geometry of the observer’s 
worldline. Two conceivable metrics for the 3-space are noticed and the choice judged 
unimportant for most purposes. An equation for the eikonal of geometrical optics is found 
and an approximate solution exhibits the leading contributions that are made to the optical 
length of a ray by the observer’s angular velocity and translational acceleration, the former 
contribution being independent of the refractive index of material traversed by the ray and 
at rest in the observer’s coordinate system. 

1. Introduction 

In the context of special relativity (gravity absent and consequently a flat spacetime) 
it is occasionally necessary to consider electromagnetism in non-inertial coordinates. 
An example is the Sagnac experiment and  subsequent developments leading to the 
modern optical gyroscope. A typical situation is that an  observer in arbitrary motion, 
and  consequently using a non-inertial coordinate system, experiences electromagnetic 
phenomena in matter that is at  rest in his coordinate system. He seeks the field equations 
and constitutive relations for matter that behaves linearly and without dispersion when 
at rest in an  inertial frame. Of course some materials behave in a much more complicated 
way, perhaps being non-linear or  exhibiting memory effects for example, but for many 
purposes the simple model is useful. 

Despite the limited objective, it can prove surprisingly difficult and  even confusing 
to try to cull from the literature a succinct formulation that is sufficiently general to 
cover a range of conditions in a manner permitting ready application to particular 
cases. Several reasons may be advanced. A minor hindrance is that some of the 
published material is buried in accounts of general relativity although in practical 
terms gravity can be neglected. Some treatments are restricted to free space or time- 
orthogonal coordinates or  to both. Another aspect concerns the  metric tensor of the 
3-space. Because the absence of gravity allows the existence of coordinates for which 
the spacetime metric is the diagonal Lorentzian (1, 1, 1, -1) most accounts of special 
relativity tacitly assume such coordinates; in particular the 3-space metric is assumed 
to be that of rectangular Cartesian coordinates. But in non-inertial systems there is 
interest also in taking for the metric of the 3-space something other than the spatial 
part of the metric of the 4-space. And finally, none of the usual treatments achieves 
useful generality regarding the kinematics of the observer’s motion. 
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The present purpose is to give a formulation, in terms of the kinematics of the 
observer's world line, that is readily applicable to a range of situations. Although 
attention is focused on material at rest in the observer's coordinate system, the basic 
relations in terms of the 4-velocity of the material are applicable to material in motion. 

Section 2 establishes the notation and  the point of view, setting out Maxwell's 
equations and  the constitutive relations. Section 3 considers the metrics, both of the 
4-space and the 3-space, and the consequences of various choices. Section 4 gives 
some examples and makes comparisons with other treatments. In section 5 the equation 
for the eikonal of geometrical optics is obtained and an  approximate solution provides 
the basis for remarks on the optical detection of angular velocity and translational 
acceleration. 

2. The electromagnetic equations 

Maxwell's equations in four-dimensional form are 

La,,, + L, , ,  + Lye,, = 0 

~ G I - " 2 ( I G / 1 ' 2 M a p ) 3 p  = S a .  (1b) 

(10 )  

The arbitrary coordinates are x n  with x 4 =  ct, t being the time and  c being the speed 
of light in an  inertial frame. A comma denotes partial differentiation with respect to 
the coordinate corresponding to the following letter. Greek indices run from 1 to 4 
and Latin indices run from 1 to 3, repeated indices implying summation. The metric 
4-tensor g,, has determinant G<O and g44<0. La, and MOP are antisymmetric 
4-tensors associated, respectively, with the field 3-vector pairs ( E ,  B )  and (H, D ) .  The 
right-hand side of (1 6)  takes account of the charges and currents that are the sources 
of the field. 

We identify the components of the field 3-vectors in terms of the elements of the 
antisymmetric 4-tensors in such a way that Maxwell's equations in 3-space take their 
customary form 

E ~ ~ ~ E ~ , ~  = -aB"/at (T'"B"),, = O  (2a )  

E ~ ~ ~ H ~ , ~  = J" +aD"/at r-1/2(y1/2Dm),m = (26)  

the charge density and current density being p and J", respectively. With emnp = emnp = 
*1 according as the indices are an  even or  odd permutation of natural order, 

the metric of the 3-space being ymn with determinant r > 0. Indices in (2) are raised 
and lowered by this metric 3-tensor which, for reasons discussed later, may differ from 
the spatial part of the metric 4-tensor. 

With the restriction that T is independent of time, it is straightforward to show that 
( l a )  implies (2a )  and ( l b )  implies (26) subject to the identifications 



Electromagnetism in non-inertial coordinates 5171 

The constitutive relations are expressed in terms of the 4-tensors dual to L,, and  M a p .  
With eaoyS= enprs = * 1  according as the indices form an even or odd permutation of 
natural order, define 

& 4 Y a  = - 1  G 1 ~ 1 ' 2  e e p Y &  caprs = IG/1'2eupyfi 

POP = ; & m P Y G  L,a p"" = -lI&mnPEp Pm4= -.AcB" 

Q op =' 2E,pysMYb Q mn = -  C E m n p D P  Q m 4 = H m .  

At this point attention is for the moment confined to inertial coordinates. In an inertial 
frame in which the material is at rest and unaccelerated we take the constitutive 
relations to be 

B" = popm"H, D" = E ~ E " ' E , .  ( 6 )  

51 units are used throughout, p0 and F~ being, respectively, the permeability and 
permittivity of free space. Define the 4-tensor of relative permeability pup by its 
components in the rest inertial system, noting that the 4-velocity of the material is 
v u  = ~ 8 4 "  in that system. Hence in any inertial system we have the Minkowski magnetic 
constitutive relation 

vpPeP = ( ~ 0 / E o ) l ' 2 p . a p v A Q p A .  ( 7 )  

v p M u P  = ( ~ ~ / p . , , ) '  ' E ~ ~ ~ ~ L , , .  (8) 

p e p  = p(g"P + c-2v"vP) 

Similarly the electric constitutive relation is 

If the material is isotropic in the inertial rest frame and has relative permeability p. then 

and  ,sap takes a similar form. The constitutive relations become 

We now assume that (7)-(10) hold also in any non-inertial coordinate system. Thus 
we assume that, in the momentarily comoving inertial frame, the constitutive relations 
are unaffected by the acceleration. In  the absence of a supporting microscopic model 
this is a mere assumption which can, however, be defended on two grounds. Firstly 
the assumption is likely to be approximately true of all materials at low accelerations 
whereas any other behaviour is likely to be restricted to specific classes of material. 
Secondly the model implied by the assumption provides a benchmark against which 
other models may be viewed. 

In what follows we consider the electric and  magnetic constitutive relations in the 
simple illustrative case where the material is at rest in the observer's non-inertial frame, 
and  would be isotropic if it were at rest in an inertial frame. Thus the constitutive 
relations are (9) and  (10) with 
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The set of 3-vectors, comprising g ,  together with the field vectors, have their indices 
raised and lowered by the metric 3-tensor ymn.  It may be remarked that the relation 

ppoH,Dm = EE,E,B" 

which is trivially obvious in inertial coordinates, carries over to non-inertial coordinates. 
Finally the 4-force on a particle of charge q is 

pa = ( 9 1 c ) ~ p L 3  (13) 

from which we can find the 3-force in the frame of the non-inertial observer once we 
have discussed the metrics. 

3. The metrics and their consequences 

In time-orthogonal coordinates, i.e. with g,,  = 0, the metric of the 3-space, y m n ,  is g,,, 
the spatial part of the metric of the 4-space. One reason why we have preserved the 
distinction between them becomes clear from (12), which suggests that freedom to 
choose ymn independently of g,, may enable us to simplify the consitutive relations. 
In particular, if we could have gmPyp , l  = ST then the tensor 9: would be isotropic. 
But clearly this condition is not in general satisfied by choosing ymn = g,,,,,. In fact 

But there is another reason for maintaining the distinction between the two 3-metrics. 
As remarked in section 1, some of the work that is relevant is buried in accounts of 
general relativity in those parts (and this is the crucial point) where the curvature of 
spacetime does not feature. In other words the relevant discussion is independent of 
whether spacetime is flat or curved. In this context both Mdller (1952, pp 237-8) and 
Landau and Lifshitz (1962, pp 271-3) consider the concepts of proper time and proper 
distance. On putting dx" = 0 in 

- C' d r 2  = gap dx" dXP 

the element of proper time is 

d r =  c - ' I ~ , ~ J ' ' '  dx4. 

But the element of proper distance is 

d a  # (g,,,,, dx" dx")"'. 

By proper distance between adjacent events is meant the distance measured by a 
momentarily comoving inertial observer, and the two cited references show that 

d a  = ( ymn dx" dx")"' Y m n  = gmn -gL'gm,gn,. (14) 

This choice has two consequences. Firstly on expanding the determinant of the 
4-metric by pivotal condensation on g,, it is seen that G = g4,T. Secondly from 

8; = gapgpp + ga4g4, 
O = S " -  4 - gnpgp4+gn4g44 

gn4- --g44g - - I  n p  gp4. 
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Substituting the left-hand side of the last equation into the expansion of g"'-y,, gives 
gnpyp, = iSk, as desired. 

Thus the choice (14) gives 
1 / 2  m .2 = l g 4 4 J ' 2  9: =1g,, /-  8, 

D" = lg441-' '&&,E"' - &""gnHp (15) 

B" = lgd4/-' ' p p 0 H m  + gmnPgnEp. 

The case of time-orthogonal coordinates is particularly simple, for then g, vanishes 
and the sole effect of the non-inertial coordinates is to multiply the relative permittivity 
and relative permeability by the factor lg441-1'2. This is true even for free space. 

The form of the metric 4-tensor has now to be considered. The details are relegated 
to the appendix and an outline will suffice here. An observer in arbitrary motion may 
use a wide range of coordinate systems, but one merits particular attention because it 
is completely defined by the geometry of his worldline in analogy to the Frenet triad 
of orthonormal vectors encountered in the geometry of a curve in three dimensions. 
In that case, beginning with unit tangent, repeated differentiation generates unit normal 
and unit binormal, introducing the scalar curvature and torsion. In an analogous 
fashion, beginning with X, the timelike unit tangent to the observer's world line, 
repeated differentiation generates the orthonormal tetrad X, that is the vector basis 
for the observer's coordinate system. The spacelike triad Xm is the vector basis for the 
3-space, and an event P in it has position vector r = xmXm. If T i s  the observer's proper 
time the spacetime coordinates that he allocates to P are xa  with x 4 =  cT. 

The Frenet equations for the observer's worldline take the form 

dX4Id T = ( f  I c)Xi 

dXJd T = 0 x X, 

d X , / d T = n x X , + ( f / c ) X ,  

dX3/ d T = Cl x X3 . 
The first, second and third unit normals are, respectively, X I ,  X, and X3, and the first, 
second and third curvatures are, respectively, K ,  , K 2  and K 3 .  The physical significance 
of the first curvature is that the observer's proper acceleration is 

f =fX1 f = c 2 K , .  

The physical significance of the second and third curvatures arises from the definition 

n = c( K,X, + K3X1) 

for the Frenet equations show that is the angular velocity of X, and X 3  and also 
gives the spatial part of dX,/dT. Here and subsequently, when working with 3-vectors, 
it is convenient to use the customary notation in which the dot and cross, respectively, 
denote scalar and vector products. 

This coordinate system may fairly be called the observer's intrinsic system, and in 
it the square of the element of interval is 

ds2 = ar . dr + 2h.dr dx4 - [ ( c,/ c)*  - h ' 3  ( d ~ ~ ) ~  

h = iL x r / c  c I / c  = 1 + r . f / c 2 .  

In this notation ar = dxmXm. Hence 
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In dyadic notation, U being the unit dyadic, 

g m n  = x, - [U - ( c/  c, ) hh ] . x, . 
This coordinate system is not time-orthogonal in general, and choosing the 3-metric 

according to (14) leads as before to the constitutive relations (15) and 

r = ( C , / C ) ~ [ ( C , / ~ ) * - ~ ~ ] - ~  A = [ ( C I /  c)’ - h 2 ] - ” 2 .  

On the other hand, the choice y,,, = g,, is very natural, and the dyadic representation 
of ‘4’; is seen to be 

W = ( C I /  c)[ (c1/ c)’ - h’]-’[ U - ( C/ c,)’hh] 

giving the constitutive relations 

[ (CI/ c)’ - h 2 ] D  = E E O ( C ~ / C ) [ U  - ( C/ c,)’hh] - E  - h x H /  c 

[ ( c ~ / c ) ’  - h 2 ] B  = /L /L~(c~/c) [U - ( c / c , ) ’ h h ]  - H + h  x E / c .  

Generally h is very small, and neglecting h’ gives 

D = ( c / c ~ ) (  &&,E - h x H/c,) B = (C/C,)(PPoH + h x E / c , )  (18) 

which also results from (15) with the same approximation. 
We can now return to (13), giving the 4-force on a charged particle, and deduce 

the 3-force in the observer’s coordinate system. The definition of 3-force in a non-inertial 
coordinate system has been discussed previously (Scorgie 1990) and it has been shown 
that a useful definition, as in an inertial frame, is F, = p-’P, with p = dT/d.r, the 
proper time of the particle being 7. Writing 

u = u + S L x r  

the 4-velocity of the particle, from (A.2), is 

v = p (  U + ClX4) = p (  U”X, + clX4) = v e x , .  

Then (13) gives 

f‘m = ( 4 / c ) p ( c , E , + c & , , p u n g P ) .  

Hence the 3-force is 

F = q [ ( c , / c ) E  + ( U  + S L  x r )  x B ] .  (19) 

At the origin of coordinates (the location of the observer) 

F = q(  E + u x B )  

which is identical in form to the expression for the Lorentz force in an inertial frame. 
A central role has been accorded to the observer’s intrinsic coordinate system in 

which the time axis is tangent to his worldline and the space axes are its three normals; 
and reference should be made to other conceivable coordinate systems. The topic has 
previously been discussed (Scorgie 1990) and it has been shown that the metrics of 
coordinate systems in which the observer is at rest at the origin form a family described 
by the square of the element of interval 

(21 1 ds2 = dr  - dr + 2( SL + o) r x dr  d T - { c: - [(a + w ) x r ] ’ }  d T’ 
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the arbitrary vector w being the angular velocity of the space axes as seen from the 
intrinsic coordinate system. The cited reference shows that the condition w = -a 
corresponds to Fermi-Walker transport of the space axes along the observer’s worldline. 
Of course this choice abolishes rotational effects and consequently is not appropriate 
in a discussion of the Sagnac experiment or the optical gyroscope. The condition w = 0 
takes us back to the intrinsic coordinate system. These two cases are the most interesting 
for general purposes although other values of w may be of interest in specific instances. 
In any event, the structure of (21) shows that the electromagnetic constitutive relations 
would be obtained by replacing Cl by Cl+ w in the relations already established for 
the intrinsic coordinates. 

4. Examples and some comparisons 

The first example, from Atwater (1974), is trivial but illustrates a point that is worth 
remarking, He considers only free space in a frame obtained from an inertial one by 
the Galilean transformation 

t = t ’  x =  v t + x ’  Y =Y’  z = z ’  

primed coordinates referring to the non-inertial frame. 
In our notation 

g m n  = Smn g44=-[1-(u/c)’I g m 4  = ( U/ C )  am 1 G = - 1 .  

Because this 4-metric is not of the form (21), we have to go back to the basic relations 
(1 1). Following Atwater, we choose -ymn = g,, ; hence A = 1 and the dyadic representa- 
tion of Y is 

W = [I - ( U/C)’]-’[U - ( r ; /c ) ’ee]  

the unit vector in the x direction being e. Also 

g=(v/c)’[l-(v/c)*]-’e.  

The constitutive relations become 

[ l  -(v/c)’]D= ~ ~ ~ [ U - ( u / c ) ’ e e ] - E - ( v / c ~ ) e x H  

1.1 - ( v / c ) ’ ] B  = ppo[U - (v/c)*ee] . H +  ( v / c 2 ) e  x E. 

These relations hold for isotropic material, whereas Atwater deals only with free space. 
But even with E = p = 1 our treatment bears little resemblance to Atwater’s. To arrive 
at his form notice that the second of the pair (22) gives 

[ 1 - (v/c)*]e x B = ppoe x H +  (v/c’)e x ( e x  E ) .  

Substitution for e x  H in the first member of (22), and considering only free space, gives 

D = &,,(E - ue x B ) .  
Then Maxwell’s equation 0 * D = p yields 

V * E  = p / s O -  ve- (V  x B )  (23) 
which is one of Atwater’s equations. 

two vectors, E and B, writing the inertial version of Maxwell’s source equations 
His approach can be summarized in this way. He defines the field in terms of only 

V x B = p o J + p o E o a E / a t  V * E = p /  E O .  (24) 
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Since he does not recognize the vectors D and H, he does not explicitly use constitutive 
relations of the type (22). He  notes that (23) differs from the second member of (24). 
And a similar argument would yield an  equation differing from the first member of 
(24). Hence Atwater concludes that the form taken by Maxwell’s source equations in 
a non-inertial frame differs from that in a n  inertial frame. 

Our formulation, in contrast, preserves the form of Maxwell’s equations (2) in all 
coordinates. But the concomitant is that the field vectors to be used in the source 
equations are D and H. If these are expressed in terms of E and B through the 
constitutive relations then of course the resulting source equations d o  not preserve 
their form, The fact that we deduce Atwater’s equations from our (22) shows that, for 
free space, both approaches lead to the same conclusions. Atwater’s treatment does 
not extend to the case where matter is present. 

An interesting example is provided by the work of Heer (1964) on the resonant 
frequencies of a rotating electromagnetic cavity. Two aspects present themselves: 
accepting Heer’s metric, what form would we deduce for the constitutive equations; 
and, secondly, does Heer’s metric accurately describe the physical situation he wishes 
to study? 

His metric is that of an  observer at rest in an  inertial frame but using space axes 
(x, y ,  z )  that rotate at  angular velocity w about the z axis. This is what commonly 
appears in the literature under the heading ‘transformation to rotating axes’. It is a 
trivial case of (16) with the substitutions 

T = t  f = O  R = w x ,  = w 

writing X ,  for the unit vector in the z direction. Consequently c1 = c, h = w x r l c ,  and 
with y,, = g,,, as assumed by Heer, our constitutive relation (17) is 

(25) 
together with a similar magnetic equation. This is an  explicit relation, whereas Heer 
arrives at  an  implicit relation. To reach it, notice that the first member of (17) gives 

(1 - h 2 ) D =  E E ~ ( U - ~ ~ ) . E  - h  x H/c  

D .  h = E E ~ E *  h 

and this equation together with (25) gives 

D S  h x ( h  x D )  = EEOE - h x H / c  (26) 
which is Heer’s version of the electric constitutive relation. And the magnetic relation 
is treated similarly. 

Concerning the appropriateness of the metric assumed by Heer, it is sufficient to 
note that he wishes to calculate the resonant frequencies of a tubular cavity in the 
form of a square or  circle, say, rotating about an  axis through its centre and  perpen- 
dicular to its plane. The cavity is filled with matter that rotates with it. Consequently 
the matter experiences centripetal acceleration and  cannot be considered at rest in an  
inertial frame. The worldline of a particle of matter is that of a point rotating in a 
circle of radius R, say, at angular velocity 0 ;  and the Frenet relations readily give 

K ,  = ( yw/c)2R K z =  y2w/c K,=O 
with y = [ l  - ( ~ R / C ) ~ ] - ’ : ~ .  

Also the first normal to the worldline of the particle is directed towards the centre 
of the circle and  the third normal is perpendicular to its plane. The metric is given by 
(16) with the substitutions 

f = ( Y W ) * R . V  R = y * w x , ,  
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Also d T =  y - ’  dt and the constitutive relations are (17) with 

c , / c =  l + ( y w / c ) ’ R r . X ,  h = ( y ’ o / c ) X , x r .  

Thus Heer’s relation (26), involving h 2  it may be noted, is based on a metric that does 
not accurately describe the physical situation that he wishes to study. But the trouble 
is more apparent than real, for examination of his subsequent calculations shows that 
they retain only terms linear in h. To this order of approximation there is no difference 
between the two metrics. 

This aspect features also in Post (1967), where he discusses at some length the 
correct metric to be used in treating the Sagnac effect. His preferred form results from 
ad hoc tinkering with the ‘rotating axes’ metric, but he concludes that the precision 
of experimental measurement is too low to provide a test of the various possibilities. 

Moller (1952) discusses a class of 4-metrics rather than a specific example. Matter 
is absent and the coordinate system is time-orthogonal. Allowing for differences in 
choice of units, his constitutive relations are our (15) with E = p = 1, g, = 0. 

The account of Landau and Lifshitz (1962) is similar although differing in two 
respects: the coordinates are not time-orthogonal, and the 3-metric is chosen according 
to our (14). Again allowing for different units, putting E = p = 1 and retaining the terms 
in g,, their constitutive relations are our (15). 

Tanaka (1978) studies electromagnetic wave propagation in a dielectric at rest in 
the coordinate system of an observer having constant proper acceleration. Consequently 
his metric is our (16) with zero angular velocity; then (17) gives 

D = ( c / c , ) E e O E  B = (C/CI)CLPOH 

and these are the relations used by Tanaka. 

vector wave equation 
From these relations and Maxwell’s equations it is straightforward to deduce the 

[f. ( V E  - Ef/CC,) i 2 f x  (V x E ) ]  = 0 

which yields as a special case the scalar equation (31) of Tanaka’s paper, after obvious 
misprints have been corrected. The nominal index of refraction is n = (ep)”’ .  

In fact (27) has a wider range of application than might be thought from its 
derivation which assumed constant acceleration. For, in most applications the time 
scale of the observer’s kinematics is much slower than that of the electromagnetic 
wave. Consequently the acceleration remains virtually constant during many periods 
of the wave. 

From the structure of (27), without seeking an explicit solution, we can deduce 
that it describes light travelling in circular arcs with speed c , / n .  To see this, notice 
that the presence of matter affects only the second term. Suppose we know a solution 
of (27) for free space. In that solution replace T by T l n ;  the new solution will satisfy 
(27) for material of refractive index n. But it follows directly from the free-space metric 
(Scorgie 1989) that light travels in circular arcs with speed c , ;  hence the deduction is 
established. Moreover, having established the simple time-scaling between the 
behaviour of light in matter and in free space, we can draw on all the results of the 
earlier free-space study without further recourse to (27). 

Finally, reference may be made to the work of Anderson and Ryon (1969) who 
give constitutive relations for uniform rotation and constant linear acceleration. Case 
I11 in table IV of their paper gives the relations for uniform rotation and their equations 
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(54) make clear that they are using the 'rotating axes' metric as encountered in the 
discussion of Heer (1964). With rearrangement of the order of terms to aid comparison, 
the results in table IV are, for the example of the magnetic relation, 

(rS)-' * B +  TU x ( U  x B )  = p H +  TU x E (28) 

where as our results are 

B +  h x ( h  x B )  = ppoH+ h x Elc. 

The apparent discrepancies arise from notational differences. Thus Anderson and  Ryon 
put pLo and c equal to unity, and  the other differences arise from the fact that they 
are working in cylindrical polar coordinates: S-' is just the metric tensor of these 
coordinates. 

Case 111 in table I of Anderson and Ryon (1969) gives their results for constant 
linear acceleration, and agreement might be expected with our results and those of 
Tanaka (1978). But the Anderson and Ryon result is 

B = ~ H + u x  E - U X ( U X  B )  (30) 

whereas our result, and  that of Tanaka, is 

€3 = ( c / c , ) p p o H .  (31) 

There is a real difference here because (30) and  (31) apply to different physical 
situations. Recall that throughout this paper the material has been at rest in the 
non-inertial coordinate system. Thus for rectilinear motion the material in a plane 
perpendicular to the direction of motion has a common proper acceleration which 
differs from plane to plane so that the material remains at rest in the non-inertial 
coordinate system. Anderson and Ryon, however, assume that the observer and  all 
material particles share a common proper acceleration. This means that planes (of 
material) perpendicular to the direction of motion d o  not maintain a constant coordinate 
distance apart. In short, the material is in motion in the non-inertial coordinate system 
although, of course, all the particles have a common velocity meashred in a fixed 
inertial system. This is reflected in the fact that, although the field vectors E, B and 
H in (30) are measured in the non-inertial frame, U is the common velocity measured 
in the fixed inertial frame. Thus (31) applies to a solid material whereas (30) applies 
to material which, in the non-inertial system, is flowing in a way that can be calculated 
and  found to be quite complicated. The essence of the distinction is captured in the 
old conundrum about the two identical rockets in line ahead configuration and 
connected by a fine thread: does the thread break? 

5. Geometrical optics 

Clearly an  attempt to study wave propagation using the full constitutive relations (17) 
is likely to result in a mass of fine detail appropriate only to a specific application. 
For a broader view it is more profitable to focus attention on the short-wavelength 
limit contemplated in geometrical optics, acknowledging also the smallness of the 
non-inertial influences. The detail is straightforward and it will suffice to state the 
principles governing the approximations that are made. 

The numbers f r / c z  and n r / c  are small; hence their product and higher powers of 
either are nelgected. The wavefunctions contain the factor exp(ik r ) ,  the wavevector 
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k having a magnitude which varies in inverse proportion to the wavelength; hence the 
spatial derivative operator V introduces a scalar factor that tends to infinity as the 
wavelength tends to zero. For example, / r  x (0 x E)I >> IEl. And for the reason given in 
discussing the range of application of (27 ) ,  time derivatives of the observer’s acceler- 
ation and angular velocity are neglected. 

The approximate vector wave equation that results is 

(32 )  
‘ a 2 E  2 a 1 

V 2 E  -(-$ z+; E ( h . V E ) - i  [ f V E + 2 f x  (V x E ) ]  = O  
C 

the nominal index of refraction being n = ( ~ p ) ” ~ .  The equation in this form resembles 
( 2 7 ) ,  remembering that higher-order terms have been dropped and first-order effects 
of angular velocity have been added. But for further development it is preferable to 
group together terms involving non-inertial effects, obtaining 

The term in square brackets in (32 )  has been dropped because in the short-wavelength 
limit it is negligible compared with the terms retained in ( 3 3 ) .  

Now write 

E = F exp[i(p - U T ) ]  

the vector amplitude F and the eikonal cp being functions of position. With nelgect of 
V’F due  to being small in comparison with the terms retained, we have 

( ~ 9 ) ’  = ( n w / c ) * + 2 ( w / c ) [ h . ~ q  - ( w n 2 / c 3 ) r . f ]  

(V‘p)F+ 2[Vp - ( w / c ) h ]  *OF = 0. 

(34 )  

( 3 5 )  

When ( 3 4 )  has been solved for the eikonal the behaviour of the vector amplitude can 
be found from (35 ) .  The latter aspect is of secondary interest and we confine attention 
to ( 3 4 ) ,  noting that the factor in square brackets arises from non-inertial effects and  
is small. If it were zero the plane-wave solution of (34 )  would be 

cp = ( n w / c ) j - r  

the unit vector in the direction of travel being j .  
Accordingly, write 

c p = ( n w / c ) j - r + e  

where 8 is a small addition for non-inertial effects. Neglecting (VO)2,  we find 

j . V O =  ( w / c ) ( h . j - n r . f / c ’ )  

which is satisfied by 

CO = ( w / c ) [ h  - ( n r . f / c ’ )  j ]  Vcp = ( w / c ) [  nj+ h - ( n r . f / c 2 )  j ] .  

The optical path length of a ray from PI to P2 is 

A = j ’ a r - v c p  1 
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the integral being taken along the ray. Thus 

A = A ( a ) + A ( f l ) + A ( f )  

A( a )  = nwa/  c a = coordinate length of ray 

the position vector of the centroid of the ray being p. 
The last three equations are the principal results of the short-wavelength approxima- 

tion; they show that the optical path length consists of three additive components. The 
first, given by (36), greatly exceeds the other two and exists in an inertial system. The 
small contributions arising from the angular velocity and the translational acceleration 
of the observer are given by (37) and (38), respectively. Only the contribution from 
angular velocity does not depend on the nominal refractive index of the matter; and 
only that contribution changes sign with reversal of the direction of travel of the ray. 

These relations are immediately applicable to an understanding of the Sagnac effect 
that underlies the principle of the optical gyroscope. For a ray travelling in a closed 
circuit, (37) gives 

A ( f l )  = 2 ( w / ~ ' ) f l . A  

the vector area enclosed by the circuit being 

A = $  r x d r .  J 
If the circuit is traversed in the opposite direction the vector area changes sign; hence 
the difference between the two values of optical path length is 

S = 4( w /  c 2 ) f l  * A.  (39) 
The other two contributions to the optical path length remain unaltered by reversal of 
direction of travel round the circuit and hence cancel when the difference is formed. 
The upshot is that, if two rays travel in opposite directions round the closed circuit 
and are reunited at the launch point, the difference between their optical path lengths 
is given by (39). This difference can be detected and used to measure the angular velocity. 

Several points may be noted. In accordance with an earlier remark, (39) does not 
depend on the nominal refractive index of the material traversed by the rays. And the 
observer's acceleration is also absent. This feature is worth remarking because most 
treatments of the Sagnac effect simply ignore acceleration rather than present arguments 
justifying its neglect. And of course it has to be remembered that the present treatment 
is approximate; a more accurate account would no doubt disclose some dependence 
on acceleration, though this is probably well below the level of experimental detection. 
Furthermore, although (39) or its equivalent appears in all accounts of the Sagnac 
effect, there may be subtle differences in the meanings of the symbols. Thus the angular 
velocity is here defined in terms of the geometry of the worldline of the point where 
the two oppositely travelling rays are launched and subsequently reunited. Likewise, 
the vector area is measured in the non-inertial coordinate system. For example, if the 
closed circuit is, when represented in the inertial frame of its centre, a circle rotating 
about an axis through the centre and perpendicular to the plane of the circle, it is not 
difficult to see that the circuit becomes an ellipse in the non-inertial frame of an 
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observer attached to a point on its circumference. But here again such subtleties would 
be significant only at better levels of approximation than are likely to be justified 
experimentally. 

In view of the practicability of the optical gyroscope, it is natural to speculate on 
the possibility of devising an optical accelerometer that would be based on (38) just 
as the gyroscope is based on (37). But it is easy to see that the hope is indeed forlorn 
because the contribution from (38) is completely swamped by that from (36); and, 
crucially, the latter cannot be made to cancel as in the gyroscope. Of course, ideally, 
cancellation is possible by arranging two rays at right angles to each other; but this 
would require equality of physical length to an impracticably high degree of accuracy. 

Finally, it would be desirable to compare (36), (37) and (38) with the results of 
other authors. However, i t  has not been possible to find other treatments that quote a 
complete set of comparable results. (Indeed this paper owes its existence in some 
measure to that fact.) Other treatments ignore the effect of translational acceleration 
when accompanied by rotation; hence there is nothing with which (38) may be 
compared. On the other hand, (36) is perhaps trivially obvious. This leaves (37), and 
here we may mention two sources, namely Chow et a1 (1985) and Post (1967). 

As remarked previously, the interesting feature of (37) is its independence of the 
refractive index of the comoving material traversed by the light ray. At first glance 
equation (1.24) of Chow et al (1985) seems to confirm our (37), allowing for the fact 
that their (1.24) is restricted to a closed path, whereas our (37) applies to any path. 
However, closer examination reveals that the treatment of Chow et a1 is throughout 
restricted to free space; hence the absence of an index of refraction from their results 
cannot serve to confirm our conclusion in this respect. 

Post ( 1967) gives two treatments which he calls, respectively, geometric optical 
theory and physical optical theory. Dealing first with the geometric optical theory, his 
equation (48) 

n ‘ ( l - u ) u - d r  
c 2  

is that one of his results that seems to be most nearly comparable. This equation gives 
the time difference between two rays propagating in opposite directions round a closed 
path subject to the velocity field U. The important feature is the occurrence of n, the 
refractive index of the comoving material, in association with CY which he describes 
as ‘a coefficient of drag similar to but not necessarily identical with the Fresnel-Fizeau 
coefficient of drag for translational motion’. At his equation (2) Post indicates that, 
for a non-dispersive medium in translational motion, he takes CY = 1 - n-*. Of course 
this value would render his equation (48) quoted above independent of the refractive 
index. However, his geometric optical theory is silent on the value of CY and it is 
necessary to turn to his physical optical theory for enlightenment. His conclusion from 
that theory is that, for rotational motion, the relation CY = 1 - n-* is indeed satisfied, 
but only if the relative permeability of the comoving material is unity. 

It is difficult to be certain, but this conclusion seems to stem ultimately from Post’s 
handling of the constitutive relations. He splits the constitutive tensor into two parts 
associated, respectively, with free space and matter, and then transforms the two parts 
independently. This seems a very dubious procedure; indeed Anderson and Ryon 
(1969) claim that it leads to inconsistencies. 

Certainly in his review of the experimental evidence, Post (1967) concludes that it 
‘demonstrates beyond doubt’ that the fringe shift observed in the Sagnac effect ‘does 
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not depend on a comoving refracting medium in the path of the beam’. However, it 
is likely that the experiments used material whose relative permeability differed little 
from unity; consequently this evidence is not conclusive. 

6. Discussion 

In his treatment of Maxwell’s equations in matter that is moving uniformly, Synge 
(1965) sets aside what he describes as ‘the far more difficult problem of electromagnet- 
ism in a body in accelerated motion, e.g. in rotation’. The problem has two aspects: 
the physics and the formalism. The physics has been avoided in this article by the 
assumption that, to a momentarily comoving inertial observer, the constitutive relations 
are unaffected by the acceleration of the material. A defence can be based on two 
grounds: the assumption is likely to be approximately true of all materials at low 
acceleration, whereas any other is likely to be restricted to specific materials; and it 
provides a benchmark against which others can be viewed. 

This article has been directed solely at the second aspect: given the above assump- 
tion, to produce a formulation in terms of the kinematics of the observer’s worldline. 
The central result is the constitutive relations (15), (17) and their approximate 
form (18). These relations are to be coupled with the universal form of the field 
equations (2). 

The universality of form of the field equations has the consequence that most of 
the variety, both of material properties and of observer’s motion, is carried by the 
constitutive relations. This separation between the field equations and the constitutive 
relations results from the use of four distinct vectors E, B, H and D to describe the 
field even in free space. It may be remarked that even some of the authors who define 
the free space field in inertial coordinates by E and B alone find it useful to introduce 
D and H also when non-inertial coordinates are encountered. This is surely an argument 
for always using the four distinct vectors. 

Although the field equations (2) retain their form in all circumstances, their content 
depends to some extent on individual circumstances. In particular, this arises because 
the determinant of the metric of the 3-space enters. And if the coordinate system is 
not time-orthogonal there is a choice of 3-metric: it may be the space part of the 
4-metric or it may be as defined by (14). The latter has two points in its favour. Firstly, 
as has been shown, the constitutive relations are slightly simplified. Secondly, there is 
a sense in which the 3-metric (14) provides the true measure of distance in the 3-space. 

The existence of two conceivable 3-metrics might seem to be something of an 
embarrassment: how should the choice be determined? But in fact the difference 
between the two, being second order in O r /  c, is generally not detectable experimentally. 
Of course on another view of this situation it is a matter for regret that potential variety 
in the fine detail has apparently not been realized because measurements are not 
sufficiently accurate. Something of the same thought attaches to the perennial question: 
what is the ‘correct’ metric (if, indeed, one exists) when rotation is encountered? The 
point has arisen in discussing the work of Heer (1964), and a distinction has been 
drawn between two situations. In one, ‘transformation to rotating axes’, the origin of 
coordinates is at rest in an inertial frame but the space axes rotate. In the other the 
origin of coordinates moves in a circle and so suffers centripetal acceleration. Heer 
uses the metric appropriate to the first although his problem requires the second. But 
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again the difference between the two metrics is second order and  hence insignificant 
experimentally. 

The metric (16) for an  observer in completely general motion has proved useful 
but is of wider interest in its own right since it is the basis for all physical measurements 
that he makes. The parameters describing the kinematics of the observer’s worldline 
are the three curvatures. The first curvature is a measure of the observer’s proper 
acceleration f which appears in the metric through cl . The second and  third curvatures 
are proportional to components of the angular velocity SI of the space axes which 
appears in the metric through the vector h. Thus, given the observer’s worldline, it is 
straightforward to apply the Frenet equations to calculate f and SL and so arrive at 
the metric (16). Its form shows why, in general, physics in non-inertial coordinates is 
likely to be more sensitive to rotation than to acceleration. For, rotation produces the 
term in h for which there is no counterpart in an  inertial frame. In contrast, acceleration 
merely effects a slight change in a term that already exists in an inertial frame: the 
inertial speed of light c is replaced by c , .  

The point is illustrated by the short-wavelength limit of the wave equation. Acceler- 
ation does contribute to the optical length of a light ray in the non-inertial system, but 
its contribution is likely to be insignificant even compared with the small contribution 
from angular velocity. By far the greatest part of the optical path length is the inertial 
contribution. The optical gyroscope is feasible because both oppositely travelling light 
rays are equally affected by the inertial contribution which consequently disappears 
from the difference between their optical path lengths. Inability to arrange such 
cancellation in the optical accelerometer accounts for its impracticability. 

Appendix. The intrinsic coordinate system 

The observer’s proper time being T, differentiation with respect to cT is denoted by a 
superior dot. With X 4  denoting unit tangent to the observer’s worldline, write A4 = K , X I ,  
where X ,  is a unit spacelike vector and K ,  is a scalar. Write XI = pX4 + K J 2  where p 
and K 2  are scalars and X, is a unit spacelike vector orthogonal to X I .  T h e n p  = - - X 4 * X ,  = 
K ,  , Continuing in this fashion leads to the Frenet equations in spacetime 

X4= K , X ,  

X 2  = - K , X ,  + K3X3 

X, = K l X 4 +  K 2 X 2  
(A. 1) 

X3 = - K , X , ,  

Because the observer’s 4-velocity is cX, his 4-acceleration is 

f = f X 1  f = c 2 K , .  

In  the observer’s 3-space it is convenient to use ordinary vector notation in which the 
dot and  cross respectively denote scalar and  vector multiplication. Define the angular 
velocity 

SL = c( K , X ,  + K 2 X 3 ) .  

Then (A.l)  can be written 

dX41d.r = ( f / c ) X l  d X l / d T = R x X l + ( f / c ) X q  

dX,/d T = x X 2  d X 3 /  d T = SL x X ,  . 
Thus fl is the angular velocity of the space axes. 
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The position vector of an event P in the observer's 3-space is r = x m X ,  and its 
spacetime coordinates are xoL with x4 = cT. Since spacetime is flat, an ordered pair of 
events defines a 4-vector. To find the metric in this coordinate system let 0 be an 
arbitrary spacetime origin and let Q be the event occupied by the observer. Let the 
spacetime vectors be 

OQ=W Q P =  Y=xmX,,, O P =  R = W +  Y. 

The 4-velocity of a material particle at P having proper time T is 
V = d R / d T = c p ( W +  Y )  p = dT/dT. 

Also 

w = 'Y4 Y = x m x m + x m X m .  

The position vector being x"Xm = r, the coordinate velocity is 

cXmXm = u = a r / d T  

the operator a / d T  acting on vector components but treating the basis vectors as 
constant. Then substitution for X,,, from the Frenet relations gives 

V = p ( u  +a x r+ c l X 4 )  c I  = ( 1 + r .f/ c') c. 

p = ( c / c l ) { l  - [ u ' + ( a  x r ) * + 2 u . a  x r ] ~ ; * ) - ' / ~ .  

( '4.2) 

Since the square of a 4-velocity is -c2,  we have 

Defining 

h = f l x r / c  

and recalling that the square of the element of interval at P is ds'= -c2 dr2,  we find 

ds2 = ar.ar+2h.dr dx4-  [ ( c , / c ) ' -  h ' ] ( d ~ ~ ) ~ .  

From its construction, the vector set X, is an orthonormal basis for describing the 
geometry of events from the point of view of the non-inertial observer. But in general 
it will not be a coordinate basis: there will not exist coordinates 8" such that X, = a / a e " .  
On the other hand, the coordinate basis Fa = a/ax" is in general not orthonormal. 

References 

Anderson J L and Ryon J W 1969 Phys. Rev. 181 1765 
Atwater H A 1974 Inrroduction fo General R e h i c i t y  (Oxford: Pergamon) 
Chow W W, Gea-Banacloche J ,  Pedrotti L M, Sanders V E, Schleich W and Scully M 0 1985 Rev. Mod. 

Heer C V 1964 Phgs. R e c  134 A799 
Landau L D and Lifshitz E M 1962 The Classical Theory of Fields (Oxford: Pergamon) 
Mdler  C 1952 7-he Theory of Relaticify (Oxford: Clarendon) 
Post E J 1967 Rev. Mod. Phys. 39 475 
Scorgie G C 1989 Eur. J.  Phys. IO 7 
- 1990 Eur. J .  Phys. 11 142 
Synge J L 1965 Relafiuity: The Special Theory (Amsterdam: North-Holland) 
Tanaka K 1978 J.  Appl. Phys. 49 4311 

Phys. 57 61 


